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Abstract. This paper employs continuum theory to investigate the onset of a certain type of 
thermal instability when a sample of nematic liquid crystal confined between two horizontal 
flat plates is in the presence of a vertical temperature gradient. Two particularly simple 
experimental situations are examined, in one a parallel orientation is obtained at the plates 
and in the other the boundary orientation is perpendicular to the plates. Using a Fourier 
series method, we derive an expression for determining the critical temperature gradient at 
which instability sets in. In both cases, the analysis presented here allows for the presence of 
an applied magnetic field. 

1. Introduction 

In recent papers Dubois-Violette (1974) and Currie (1973) examine the occurrence of 
cellular thermal instabilities in a sample of nematic liquid crystal confined between two 
horizontal, infinite flat plates when subjected to a vertical temperature gradient. Two 
simple experimental situations of particular interest are considered, the initial orienta- 
tion of the molecules being everywhere parallel to the bounding plates in one and 
everywhere perpendicular in the other. Assuming the principle of exchange of 
instabilities, both authors demonstrate that the initial equilibrium configurations 
become unstable when the temperature gradient reaches some critical value. Further- 
more, they show that the value and sign of this gradient threshold depend upon the 
initial orientation. 

After linearizing the field equations about the equilibrium state, Dubois-Violette 
(1974) uses ‘an iterative procedure’ on a computer to obtain the appropriate gradient 
threshclds for MBBA. The numerical results presented are found to be in good 
agreement with the experimental observations of Guyon and Pieranski (1972), Dubois- 
Violette et a1 (1973) and Pieranski et a1 (1973). However since no attempt is made to 
find an analytic solution to the problem, it must be noted that the results given are only 
pertinent to the one material MBBA. On the other hand, Currie (1973) makes various 
rough approximations concerning the magnitude of certain material parameters, and 
then employs the variational methods described by Chandrasekhar (1961) to find 
estimates for the gradient thresholds of P-azoxyanisole. Obviously such a calculation 
can only be expected to yield qualitative results at best. 

For reasons already mentioned, it is apparent that the results obtained by Dubois- 
Violette (1974) and Currie (1973) are not particularly helpful in determining the exact 
value of the threshold gradient for every nematic material. The purpose of this paper is 
to present a method of solution which overcomes certain limitations encountered in 
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those adopted by the aforementioned authors. Employing a Fourier series method used 
by Jeffreys (1928) to investigate the corresponding problem for a Newtonian fluid, the 
present paper obtains an exact expression for determining the threshold gradient of any 
nematic liquid crystal sample in either of the two particular experimental situations 
described above. It is then demonstrated that this expression provides an 'almost 
analytic' solution to the problem. In addition, the analysis presented here allows for the 
presence of an applied magnetic field whereas the analyses of Dubois-Violette (1974) 
and Currie (1973) do not. 

2. Basic equations 

In this paper we assume that the equations governing the behaviour of an incompres- 
sible nematic liquid crystal are those proposed by Leslie (1968a, b, 1969). In Cartesian 
tensor notation, they have the form 

(2.4) 

(2.5) 

2 W = 2 WO + ~~2di,jd,,j + (a1 - a2- a,)di,idj,] + a4di,jdj,i + (a3 - a~)didjdk,idk,j 

6,j = PldkdpAkpdidj + ~ 2 d j N i  -t i ~ 3 d i 4  + P d i j  + P~djdkAki  + P~didkAkj 

(2.6) 

(2.7) 

f i  =A1Ni +AzdjAji (2.8) 

qi = - K ~ T , ~  -K~didkT,k (2.9) 

2 N  = 2di + (vk,i - V i , k ) d k  (2.10) 

2Aij = vi,] + ~ j , j .  (2.11) 

Here U is the velocity vector, d is a unit vector specifying the preferred direction of the 
molecular axis, and superposed dots denote material derivatives. Associated with the 
constraints of incompressibility and (2.2) are two arbitrary functions, p the pressure and 
y the director tension. F and G represent the effect of external forces, F being a body 
force per unit volume and d A G being a body couple per unit volume. r is the heat 
supply function per unit mass per unit time and will be taken to be zero throughout this 
paper. Further, p is the density, p 1  is a positive inertial coefficient, Tis the temperature, 
and W is the form of the stored free energy per unit volume proposed by Frank (1958). 
The material functions P, P I ,  WO, KI, K Z ,  a1, az, a3, a d ,  P I ,  PZ,  ~ 3 ~ ~ 4 ~ ~ 5 ,  P6, A I ,  A 2  are 
dependent upon temperature alone and are related by 

A1 = k 2 - F 3 ,  A 2 =  p5-kk. (2.12) 
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3. Formulation of the problem 

We examine the stability of a sample of nematic liquid crystal confined between two 
horizontal, infinite flat plates in the presence of a vertical temperature gradient. The 
upper plate situated at z = h is held at a temperature T2 and the lower plate situated at 
z = 0 at a temperature Tl. Two particular boundary value problems are considered. In 
one a parallel orientation is obtained at the plates while in the other the boundary 
orientation is perpendicular. 

Assuming that the external body forces arise from an applied uniform magnetic field 
H and gravity and accepting Ericksen's assumptions (1962): 

F = -pgk, G = xa (H. d)H, grad T = 4 k ,  (3.1) 
where g is the acceleration due to gravity, 4 = 4 ( z )  is the vertical temperature gradient, 
xa  is a constant coefficient denoting the anisotropic part of the magnetic susceptibility 
and k is the unit vector in the z direction. An obvious equilibrium solution is that in 
which d takes its boundary value throughout the material, provided either H is parallel 
to d or H i s  perpendicular to d and below the threshold value for a Frederiks transition 
(Leslie 1970). In the event that H i s  parallel to d, the equilibrium state consisting of a 
zero velocity field, a constant director field d, a temperature field T, a pressure field p 
and a constant director tension field -xaH2, where H = H. d, is a possible configuration 
of the material. In the latter case the equilibrium state differs from that in the former in 
that there is now a zero director tension field. 

To avoid undue repetition, it is assumed throughout the remainder of this paper that 
H i s  parallel to d unless stated otherwise. We now consider this equilibrium state to be 
disturbed by a small amplitude velocity field U, associated with which is a director field 
d+n,  a temperature field T + s ,  a pressure field p + p  and a director tension field 
-xaH2+ 7. In linearizing equations (2.1)-(2.5) about the equilibrium state, one adopts 
the usual Boussinesq approximation (1903) and ignores all variations of the material 
parameters with temperature except where associated with gravity. The linearized 
equations take the form 

dini = 0 (3.2) U,.=() 
I , i  7 

C=-T- a2 w, 
dT 

(3.3) 

(3.5) 

where the coefficients A l , k m ,  Bijk, c j k m  and Dijk are given by Currie (1973, equation 
(3.7)). In equation (3.5) 4 is a constant average temperature gradient defined by 

(3.6) 
Choosing Cartesian coordinate axes so that d is a unit vector in the positive 

x direction, we first examine the stability of a uniform parallel orientation with respect 
to disturbances of the form 

n = (0, 0, n )  exp(imx + wt) ,  

4 = (T2 - T J h .  

U = (U, 0, v )  exp(imx + wt) ,  s = s exp(imx + wt) ,  
(3.7) 
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where n, U, U, s are functions of z alone. It follows that the appropriate boundary 
conditions to be applied at both z = 0 and z = h are 

(3.8) n = U = 2) =s=O. 

For each value of the wavenumber m, one expects to find a critical value of 4, say &(m), 
which is the value of (b with smallest modulus at which disturbances with this 
wavenumber become unstable. The value of &(m) which has minimum modulus for all 
possible values of m is referred to as the critical temperature gradient or the gradient 
threshold of the sample. Since our aim is to obtain the critical values of 4 for which 
(3.2)-(3.5) have non-trivial solutions for values of w with a positive real part in the 
neighbourhood of w = 0, we follow Dubois-Violette (1974) and Currie (1973) in 
adopting the principle of exchange of instabilities. This principle asserts that the critical 
values are given when w is identically zero. Setting w equal to zero and making the 
change of variable 

r = rz/h, (3.9) 
the elimination of n, U, s, 7 and @ from (3.2)-(3.5) yields an eighth-order linear 
differential equation for U as 

(3.10) (D4-  qa2D2+ q la4) (DZ-aa2)(D2-  Ka2)v = -R(D2+ Aa2)a2v, 

where D = d/dr, a = m h / r  is ascaled non-dimensional wavenumber and 

77 = (2pl+ qa+qb) /r ]a ,  771 = q b / q a ,  q a  = p4+p3+p6, 

The relevant boundary conditions to be applied at both r = 0 and r = r are readily 
derived from (3.8) together with (3.2)-(3.5) and take the form 

U =Du =(D4-ga2DZ)v  =[D6-(~+v)a2D4+(q1+q~)u4D2]v = O .  (3.12) 

The stability of a uniform perpendicular orientation with respect to disturbances of 
the form 

n = (n, 0,O) exp(imx + wt),  s = s exp(imx + wt), 
(3.13) 

may be examined in a similar manner. Proceeding as above, one obtains the equation 
for v as 

(D4 - q’a 2Dz + 7) :a4)(D2 - a ’az)(D2 - K’a2)v = -R’(DZ + A  ’a 2)u 2v (3.14) 

with boundary conditions at r = 0 and r = IT given by 

U = Dv = (D4-q’aZD2)v = [ D 6 - ( v ’ + ~ ’ ) a 2 D 4 + ( ~ :  + v f ~ ’ ) a 4 D 2 ] v =  0, 
where 

U = (U, 0, U )  exp(imx + wt), 

(3.15) 

cy1 XaHzh2 
a3 a3r a 

ff ’ = - + -2, 1 vi=-, q’=- rl 
71’ 71 

K ’ = -  1 A ’ = -  1 R ’ =  - P ’ ~ + K ~ ( A Z - A ~ ) ~ ~  

K ’  A ’  f f 3 ( K 1 + K 2 ) r 4 %  * 

(3.16) 
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Comparing (3.14) and (3.15) with (3.10) and (3.12), it is apparent that the solution of 
the former set of equations may be obtained from the solution of the latter by replacing 
7, v1, a, K ,  A and R with their dashed counterparts. In addition, it is obvious from 
(3.10), (3.11) and (3.14), (3.16) that 4h4 is a universal function of a (Dubois-Violette 
1974) only when there is no applied magnetic field. Finally, in the event that H is 
perpendicular to d, lies in the xz plane and is below its appropriate critical value for a 
Frederiks transition (Leslie 1970), one obtains exactly the same equations as given 
above but with 

a3 .xaH2h2 a1 ,yaH2h2 
and a ' = - -  2. 

cyl a l r  a a3 a39r a 
f f  =-- (3.17) 

4. Solution of the problem 

We first examine the conditions under which there is a non-trivial solution of (3.10) 
subject to the homogeneous boundary conditions (3.12). Assuming that 

m 

r = l  
D8v = c A, sin m, (4.1) 

where the A, are the constant coefficients of the sine series, repeated integration yields 

BJ' O0 A, sinm- A, sin m 
u = c - + c  I , = P ( t ) +  r = l  c r8 ' 

r - 0  r !  r = l  

where the B, are constants of integration and we set 

t = r / 2 - 7  

for convenience. Employing (4.2) in (3.10), one obtains 

2 p, sin rr= -(D18-QlD~+Q2D~-Q3D:+Q4)P(t)=L(t), 
r = l  

L 
p, = - J L(t )  sin rr d r  

T o  

Using (4.4) to substitute for L(t)  in (4.7) and then employing the identity 

n(n-l)(n-2)(n-3) 
r4 

n + r = 2 s + 1 ,  (4.8) 

n + r  = 2s, 

6 t" sin m d r  = 
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where s is an integer, we obtain 

when r is odd, and 

+3(Q3B7-Q4BS)[ 1 (z) -z(z) 2 0 I T 3  +T 5 ! I T  z] 
(4.10) 

when r is even. These expressions together with (4.2) and (4.5) give the formal solution 
of (3.10). From (4.9), (4.10) and (3.12), it is obvious that the even and odd B, enter the 
solution entirely separately and hence the possible solutions split into two distinct sets, 
one symmetrical and the other antisymmetrical about the plane t = 0 .  Utilizing the 
boundary conditions, one should now proceed to find the threshold gradients for each 
type of solution. However, in similar problems, it is common to find that the least stable 
mode is a symmetrical one. Hence, we only present the analysis for the fcrmer type of 
solution. In the appendix, it is demonstrated that this is in fact the correct choice to 
make in this case. 

For a symmetrical solution, (4.10) implies that all the pzn and hence all the AZn are 
identically zero. Employing (4.9) and (4.5) in (4.2) and then substituting the resulting 
expression for U into (3.12), one obtains four simultaneous equations for Bo, Bz,  B4 and 
Bg. After solving this set of linear equations for the Bzi and then using the resulting 
expressions in (4.9), it is found that 

(4.11) 
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and 

p ----(E) 7r qa2 
l - 2  3 2 ' 

p ---+- (77 + K )  ( :)3 - (171 f 7 7 K )  

2 2  30 4 -  

.4fter multiplying both sides of (4.1 1) by [(2r + 1)* + Q1(2r + 1)6 + Qz(2r + U4 + 
Q3(2r + 1)'+ Q4]-' and then performing the summation over all integers r b 0, we 
finally use the relation (4.5) to obtain the consistency condition 

N(2r + 1) 7r 

,=o [(2r+ 1)'+Q1(2r+ 1)6+Q2(2r+1)4+Q3(2r+1)2+Q4]=4 

As noted in 0 3, an examination of the solution of (3.14) subject to (3.15) leads to the 
same consistency condition (4.12) but with q, ql, a, K ,  A and R replaced by their dashed 
counterparts. 

2 . (4.12) 

5. Some numerical results 

In the event that there are values of the parameters q, ql, a, K ,  A, a and R for which the 
consistency condition (4.12) is satisfied, the problem described by equations (3.10) and 
(3.12) has a non-trivial solution. Physically this solution represents an undamped, or 
neutrally stable, disturbance with wavenumber specified by the dimensionless parame- 
ter a.  Employing empirical data to prescribe q, ql, a, K and A, we treat (4.12) as an 
equation in a and R and rewrite it symbolically as 

f(a, R) = 0. (5.1) 
For a k e d  value of a, we compute f(a, R )  at R = 0, *RI, f RZ, . . . , where {Ri} is an 
increasing sequence of discrete values of R, and continue the process until f (a ,  R) 
passes through a zero. After finding the approximate location of that root of (5.1) with 
the smallest value of (RI, an accurate value is obtained iteratively using the rule of false 
position. The position of this root is then used to initiate the search procedure for a 
neighbouring value of a, and the root-finding process is repeated for various values of a 
so as to obtain the solution locus in the (a, R )  plane. 

Employing available experimental data for MBBA, we adopt the Parodi relation 
(1970) and take the values for the viscosities as given by Gahwillert (1971). Also we 
t 'The values for the viscosities given by Gahwiller clearly do not satisfy the Parodi relation (1970). In a private 
communication Gahwiller has informed us that the value given for (p3+p4+p6) /2 is in error and should be 
24.8 centipoise. With this exception, we have employed the same set of material parameters as Dubois- 
Violette (1974). 
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consider the themal conductivities and the elastic constants to have the values as stated 
by Dubois-Violette (1974), these being based on experimental observations of 
Vilanove et a1 (1974) and Haller (1972). In the event that there is no applied magnetic 
field present, the parameters 7, rll, a, K and h then take the values 5.435,4.17,1.167, 
1.656 and 64.6 respectively, when the initial orientation is horizontal, and 1.302, 
0.2396, 0-86, 0.604 and 0.0155, respectively, when the initial orientation is vertical. 
The solution locus, or neutral stability curve, for the former problem is represented by 
the full curve in figure 1.  The broken curve in figure 1 represents an approximation to 
the neutral stability curve obtained by using only the first term of the series in the 
evaluation of f (a ,  R). The minimum point on the approximate curve which is the point 
of physical interest, deviates from the true minimum by approximately 2% in both the 
parameters a and R. Since this error is well within the errors arising from inaccuracies in 
the empirical data, one may conclude that the infinite series (4.12) may safely be 
replaced by its first term. Figure 2 shows the neutral stability curve when the initial 
orientation is vertical, and in this case the approximate and true neutral stability curves 
are found to be indistinguishable. 

On any line of constant a in the (a, R )  plane, a value of R giving rise to a point 
outside the parabolic-type neutral stability curve ensures that any disturbance with 
wavenumber a r / h  is damped as time progresses. A value of R which yields a point in 
the inner region permits the existence of unstable disturbances with this wavenumber. 
The value of R at the minimum point on the curve gives a measure of the dimensionless 
temperature gradient which may be imposed before any unstable disturbances, of the 
form considered in this paper, exist and is therefore a quantity of physical interest. 

1 I 

0 0.5 1.0 1. 5 
a 

Figore 1. Instability curve for MBBA (having material parameters as specified in 0 5 ) ,  
without magnetic field: parallel orientation. The temperature gradient stability parameter 
-R defined in equation (3.11) is plotted against the scaled dimensionless wavenumber 
a = mh/.rr. The broken curve is the approximation obtained by using only the first term of 
the series in equation (4.12). 
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I 
0 0.5 1 .o  1 .5  

0 

Figure 2. Instability curve for MBBA (having material parameters as specified in 5 5 ) ,  
without magnetic field: perpendicular orientation. The temperature gradient stability 
parameter R' defined in equation (3.16) is plotted against the scaled dimensionless 
wavenumber a = mh/m The approximation obtained by using only the first term of the 
series in equation (4.12) is indistinguishable from the exact result in this case. 

Taking p'g = - 1 g cm-' s-'"C-', we find that the horizontal orientation becomes 
unstable when -4h4 exceeds 2.7 X lop3 cm3 "C, and that the vertical orientation 
becomes unstable when 4h4 exceeds 4.9 x lop3 cm3 "C. For a sample 1 mm in thick- 
ness, the onset of instability is found to occur when 

T2 - TI = -2.7 "C and mh/2 = 1.5 

in the former case, and when 

T2-Tl=4.9"C and mh/2=1.4 

in the latter. These numerical results seem to confirm the theoretical predictions of 
Dubois-Violette (1974)" and appear to agree reasonably well with the experimental 
observations of Guyon and Pieranski (1972), Dubois-Violette ef a1 (1973) and 
Pieranski et a1 (1973). 

Recent experimental evidence (Cladis and Torza 1975) suggests that p3 becomes 
large and positive as the nematic-smectic transition temperature is approached. 
Keeping all other experimental measurements of Gahwiller (1971) fixed, we have 
examined the behaviour of the threshold as -p3 /p2 increases up to 1.  For a given 
sample thickness, it is found that the threshold gradient magnitude decreases when the 
initial orientation is horizontal but increases when it is vertical. However, we must 
admit that the Boussinesq approximation (1903) may become invalid near the transi- 
tion temperature. 

t The slight variation between our results and those of Dubois-Violette (1974) may be accounted for by the 
fact that we have used the corrected value of p3+p4+p6. 
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6. Discussion 

The above results are in agreement with the qualitative predictions of Dubois-Violette 
(1974) and Currie (1973). In addition the numerical results confirm the theoretical 
calculations of Dubois-Violette (1974) and are in good agreement with the experimen- 
tal observations of Guyon and Pieranski (1972), Dubois-Violette et a1 (1973) and 
Pieranski et a1 (1973). However for the experimentalist wishing to compare theory and 
experiment, we believe that the present method of solution is an improvement upon 
those employed before. The method used by Currie (1973) suffers from the obvious 
disadvantages that it is inaccurate and not readily applicable to every nematic material. 
On the other hand the method adopted by Dubois-Violette (1974), although exact, 
requires one to solve (3.10) subject to (3.12) numerically for each new set of material 
parameters. An examination of such a numerical method of solution as outlined in the 
following appendix indicates the amount of computation involved. Employing (4.12), a 
comparatively trivial computation yields the threshold gradient for any nematic liquid 
crystal. In fact sufficiently accurate results may be obtained by using only the first term 
of the infinite series in (4.12), thus eliminating the necessity of a computer. In addition, 
we note that (4.12) allows for the presence of a magnetic field applied parallel or 
perpendicular to the initial director orientation. 

In closing it must be admitted that only a certain class of infinitesimal disturbances 
has been considered. Hence one is unable to say anything concerning stability with 
respect to arbitrary infinitesimal disturbances below the threshold gradient predicted by 
(4.12). With this in mind, we suggest that further experimentation using different 
nematic materials over a variety of temperature ranges would serve as a useful check on 
the predictions of the continuum theory presented in this paper. 
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Appendix 

Scott (1973) has described the use of a matrix Ricatti transformation for the computa- 
tion of eigenvalues of systems of linear ordinary differential equations of the form 

- 
-= -- dV- CU+DV, 

dT 
dU AU+BV, 
dT 

where U and V are n-vectors and A, B, C and D are n X n matrices which depend on 
the independent variable T and on some scalar parameter p, Scott (1973) has used the 
method to find eigenvalues of (A. 1) under the boundary conditions 

U(0) = 0, U(x) = 0, ( A 4  
where U(T)  denotes the value of U at the point T. The Ricatti approach involves the 
related problem of calculating the characteristic lengths of (A.l)  subject to (A.2), 
which, for a specified p, are the positive values T = x for which .non-trivial solutions 
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exist. The method is based on the introduction of the n X n matrix T(T)  via the Ricatti 
transformation 

u ( T )  = T(7) v ( T ) .  (A.3) 

T(T)  = B +AT(T)  + T(T)D + T(T)CT(T), (A.4) 

where the prime denotes d/dr, and that (A.4) may be integrated using the simple initial 
condition 

It may be shown that T ( T )  satisfies the matrix Ricatti equation 

T(0) = 0. 64.5) 

det)T(x)l= 0 (‘4.6) 

Characteristic lengths are those positive values of x for which the condition 

is satisfied. If equation (A.4) is integrated numerically using condition (A.5), sing- 
ularities of detlR ( T ) I  may be encountered before the first characteristic length is reached 
and those are traversed by transferring to the system associated with S ( T )  = T’(T), 
which is 

-S ’ (T)=  C+S(T)A +DS(T)+S(T)BS(T) .  (A.7) 

(D4- qD2+ q1) (D2-a ) ) (D2-~)~  = -R(D2+A)u, (A.8) 

If equation (3.10) is written in terms of the independent variable w = a7 it becomes 

where D now denotes d/dw and p = R / a 4 .  The boundary conditions 

U = DU = (D4-qD2)u =[D6-(q +t)D4+(q1 +T/K)D’]U = 0 (A.9) 

hold at w = 0 and they also determine characteristic lengths. (A.8) and (A.9) may be 
written in the format of (A.l)  and (A.2) if we let U be the column vector [U, Du, (D4- 
qD2)u, (D6- (q + K ) D ~  + (ql + QK)D~)u]  and choose Vconveniently. Using the empir- 
ical values for q, ql, a,  K and A as described in 0 5 ,  we obtained the first characteristic 
length x of the resulting system in U and V corresponding to various values of the 
parameter p. If xi is the first characteristic length associated with the parametric value 
A = Ai then the first eigenvalue of (A.8) is Ai with boundary conditions (A.9) imposed at 
w = 0 and w = xi. The original equation (3.10) has a non-trivial solution with boundary 
conditions at T = 0 and T = T for values a, = x i / r  and Ri = pia? of the parameters a and 
R.  Sets of values (xi, hi) enabled us to plot the neutral stability curve in the (a, R )  plane. 

Table 1. Parallel orientation problem: Ricatti results for neutral stability points. 

-1.45 
-1.50 
-1.55 
-1.60 
-1.65 
-1.70 
-1.75 
-1.80 
-1.85 
-1.90 

X 

3.1501 
3.1226 
3,0965 
3.0716 
3.0479 
3.0253 
3.0036 
2.9829 
2.9630 
2.9439 

a = x / ~  

1.003 
0.994 
0.986 
0.978 
0.970 
0.963 
0.956 
0.949 
0.943 
0.937 

R =pa4 

-1.4657 
-1.4637 
-1,4626 
-1.4620 
- 1.46 19 
-1.4620 
-1.4623 
-1.4630 
- 1.4642 
-1.4652 
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For both problems considered the results obtained by the Ricatti approach coin- 
cided with those obtained by the Fourier method described in § 4. Characteristic lengths 
and associated points on the neutral stability curves are shown in tables 1 and 2 for the 
parallel and perpendicular orizntation problcms respectively. A point of interest is that 
the selection of the symmetric case in 0 4 is now vindicated, since the Ricatti method 
obtains the least stable mode in evaluating the first characteristic length. The agreement 
between the different approaches shows that the symmetric mode is indeed the least 
stable. 

Table 2. Perpendicular orientation problem: Ricatti results for neutral stability points. 

LL X a = x / v  R ' = @ a 4  

27.0 
28.0 
29.0 
29.5 
30.0 
30.5 
31.0 
31.5 
32.0 
33.0 

2.9608 
2.9333 
2.9072 
2.8946 
2.8823 
2.8703 
2.8586 
2.8473 
2.8361 
2,8145 

0.942 
0.934 
0.925 
0.921 
0.917 
0.914 
0,910 
0.906 
0.903 
0.896 

21.301 
21,281 
21.267 
21.263 
21.259 
21.248 
21.249 
21.252 
21.258 
21.259 
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